The amygdala and hippocampal complex, two medial temporal lobe structures, are linked to two independent memory systems, each with unique characteristic functions. In emotional situations, these two systems interact in subtle but important ways. Specifically, the amygdala can modulate both the encoding and the storage of hippocampal-dependent memories. The hippocampal complex, by forming episodic representations of the emotional significance and interpretation of events, can influence the amygdala response when emotional stimuli are encountered. Although these are independent memory systems, they act in concert when emotion meets memory.
Archives
Amygdala-hippocampus dynamic interaction in relation to memory
Typically the term “memory” refers to the ability to consciously remember past experiences or previously learned information. This kind of memory is considered to be dependent upon the hippocampal system. However, our emotional state seems to considerably affect the way in which we retain information and the accuracy with which the retention occurs. The amygdala is the most notably involved brain structure in emotional responses and the formation of emotional memories. In this review we describe a system, composed of the amygdala and the hippocampus, that acts synergistically to form long-term memories of significantly emotional events. These brain structures are activated following an emotional event and cross-talk with each other in the process of consolidation. This dual activation of the amygdala and the hippocampus and the dynamics between them may be what gives emotionally based memories their uniqueness.
The psychology and neuroscience of forgetting
Traditional theories of forgetting are wedded to the notion that cue-overload interference procedures (often involving the A-B, A-C list-learning paradigm) capture the most important elements of forgetting in everyday life. However, findings from a century of work in psychology, psychopharmacology, and neuroscience converge on the notion that such procedures may pertain mainly to forgetting in the laboratory and that everyday forgetting is attributable to an altogether different form of interference. According to this idea, recently formed memories that have not yet had a chance to consolidate are vulnerable to the interfering force of mental activity and memory formation (even if the interfering activity is not similar to the previously learned material). This account helps to explain why sleep, alcohol, and benzodiazepines all improve memory for a recently learned list, and it is consistent with recent work on the variables that affect the induction and maintenance of long-term potentiation in the hippocampus.