Thinking in Systems: A Primer

Meadows’ Thinking in Systems, is a concise and crucial book offering insight for problem solving on scales ranging from the personal to the global. Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.

Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.

While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.

In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.

Solidarity Session #11 – Indigenous thinking with Tyson Yunkaporta

Chat with Tyson Yunkaporta – author, academic, maker, and Indigenous thinker of the Apalech clan in North Queensland. We talk about the need for Indigenous thinking in our food systems, decolonising agriculture, and how non-Indigenous growers and eaters can work in solidarity with First Peoples.

Tyson’s work examines global systems from an Indigenous perspective. It explores how we we learn, look at, and talk about patterns of creation, and how we can learn to live within those patterns again.

We talk to Tyson about what this means for the food sovereignty movement – which itself was born out of Indigenous and peasant struggles, and in which advocating for the rights and sovereignty of Indigenous peoples is a core principle. We explore how we can build solidarity-based communities that respect and work with Indigenous knowledges, and build food systems based around those principles.

A Symbiotic View of Life: We Have Never Been Individuals

The notion of the “biological individual” is crucial to studies of genetics, immunology, evolution,development, anatomy, and physiology. Each of these biological subdisciplines has a specific conception of individuality, which has historically provided conceptual contexts for integrating newly acquired data. During the past decade, nucleic acid analysis, especially genomic sequencing and high-throughput RNA techniques, has challenged each of these disciplinary definitions by finding significant interactions of animals and plants with symbiotic microorganisms that disrupt the boundaries that heretofore had characterized the biological individual. Animals cannot be considered individuals by anatomical or physiological criteria because a diversity of symbionts are both present and functional in completing metabolic pathways and serving other physiological functions. Similarly, these new studies have shown that animal development is incomplete without symbionts. Symbionts also constitute a second mode of genetic inheritance, providing selectable genetic variation for natural selection. The immune system also develops, in part, in dialogue with symbionts and thereby functions as a mechanism for integrating microbes into the animal-cell community. Recognizing the “holobiont”—the multicellular eukaryote plus its colonies of persistent symbionts—as a critically important unit of anatomy, development, physiology, immunology, and evolution opens up new investigative avenues and conceptually challenges the ways in which the biological subdisciplines have heretofore characterized living entities.

Warm Data Labs

Warm Data Labs are group processes, which illustrate interdependency and generate understandings of systemic patterns for people with no previous exposure to systems theory. Warm Data Labs enable new societal responses to complex challenges.

Army ants dynamically adjust living bridges in response to a cost–benefit trade-off

The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges” of linked individuals that are constructed to span gaps in the colony’s foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit’s having information on global benefits or costs.

Symbiosis in Development Book

This unique first edition hardcover of the Symbiosis in Development framework is the first complete handbook and reference manual from theory to practice on sustainable development and societal transitions.

SiD creates a complete language and backbone structure for all aspects associated with sustainable development. This includes systems thinking, the circular economy, natural capital, climate adaptation, and true value costing. Its method combines design thinking with a practical co-creation methods. SiD’s process tools allow a team to innovate new, groundbreaking solutions from A to Z. It connects a wide range of sustainability approaches, including the circular economy, the blue economy, natural capital, design thinking, the Sustainable Development Goals, co-creation, biomimicry, and Impact Design.

Nonlinear Dynamics and Chaos – Steven Strogatz, Cornell University

This course of 25 lectures, filmed at Cornell University in Spring 2014, is intended for newcomers to nonlinear dynamics and chaos. It closely follows Prof. Strogatz’s book, “Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.”

The mathematical treatment is friendly and informal, but still careful. Analytical methods, concrete examples, and geometric intuition are stressed. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

A unique feature of the course is its emphasis on applications. These include airplane wing vibrations, biological rhythms, insect outbreaks, chemical oscillators, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with the mathematical theory. The theoretical work is enlivened by frequent use of computer graphics, simulations, and videotaped demonstrations of nonlinear phenomena.

The essential prerequisite is single-variable calculus, including curve sketching, Taylor series, and separable differential equations. In a few places, multivariable calculus (partial derivatives, Jacobian matrix, divergence theorem) and linear algebra (eigenvalues and eigenvectors) are used. Fourier analysis is not assumed, and is developed where needed. Introductory physics is used throughout. Other scientific prerequisites would depend on the applications considered, but in all cases, a first course should be adequate preparation.

Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics

Selections from Science and Sanity represents Alfred Korzybski’s authorized abridgement of his magnum opus, Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics. This second edition, published in response to the recent Korzybski revival, adds new introductory material and a revised index, providing an accessible introduction to Korzybski’s arguments concerning the need for a non-Aristotelian approach to knowledge, thought, perception, and language, to coincide with our non-Newtonian physics and non-Euclidean geometries, to Korzybski’s practical philosophy, applied psychology, pragmatics of human communication, and educational program. Selections from Science and Sanity serves as an excellent introduction to general semantics as a system intended to aid the individual’s adjustment to reality, enhance intellectual and creative activities, and alleviate the many social ills that have plagued humanity throughout our history.

Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches Into the Function of Emotional Excitement

Cannon is best known for his work on the “Fight or Flight” response. In 1915, he coined the term “fight or flight” to describe an animal’s response to threats in “Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches into the Function of Emotional Excitement.” He is also credited with being one of the first to understand the significance of “Homeostasis” in the self-regulation of each human being. He developed the concept of “Homeostasis” from the earlier idea of Claude Bernard of milieu interieur, and popularized it in his book “The Wisdom of the Body” in 1932. Cannon presented four tentative propositions to describe the general features of homeostasis:

Constancy in an open system, such as our bodies represent, requires mechanisms that act to maintain this constancy. Cannon based this proposition on insights into the ways by which steady states such as glucose concentrations, body temperature and acid-base balance were regulated.

Steady-state conditions require that any tendency toward change automatically meets with factors that resist change. An increase in blood sugar results in thirst as the body attempts to dilute the concentration of sugar in the extracellular fluid.

The regulating system that determines the homeostatic state consists of a number of cooperating mechanisms acting simultaneously or successively. Blood sugar is regulated by insulin and other hormones that control its release from the liver or its uptake by the tissues.

Homeostasis does not occur by chance, but is the result of organized self-government.