Medical Neuroscience

Medical Neuroscience explores the functional organization and neurophysiology of the human central nervous system, while providing a neurobiological framework for understanding human behavior. In this course, you will discover the organization of the neural systems in the brain and spinal cord that mediate sensation, motivate bodily action, and integrate sensorimotor signals with memory, emotion and related faculties of cognition. The overall goal of this course is to provide the foundation for understanding the impairments of sensation, action and cognition that accompany injury, disease or dysfunction in the central nervous system. The course will build upon knowledge acquired through prior studies of cell and molecular biology, general physiology and human anatomy, as we focus primarily on the central nervous system.

This online course is designed to include all of the core concepts in neurophysiology and clinical neuroanatomy that would be presented in most first-year neuroscience courses in schools of medicine. However, there are some topics (e.g., biological psychiatry) and several learning experiences (e.g., hands-on brain dissection) that we provide in the corresponding course offered in the Duke University School of Medicine on campus that we are not attempting to reproduce in Medical Neuroscience online. Nevertheless, our aim is to faithfully present in scope and rigor a medical school caliber course experience.

This course comprises six units of content organized into 12 weeks, with an additional week for a comprehensive final exam:
– Unit 1 Neuroanatomy (weeks 1-2). This unit covers the surface anatomy of the human brain, its internal structure, and the overall organization of sensory and motor systems in the brainstem and spinal cord.
– Unit 2 Neural signaling (weeks 3-4). This unit addresses the fundamental mechanisms of neuronal excitability, signal generation and propagation, synaptic transmission, post synaptic mechanisms of signal integration, and neural plasticity.
– Unit 3 Sensory systems (weeks 5-7). Here, you will learn the overall organization and function of the sensory systems that contribute to our sense of self relative to the world around us: somatic sensory systems, proprioception, vision, audition, and balance senses.
– Unit 4 Motor systems (weeks 8-9). In this unit, we will examine the organization and function of the brain and spinal mechanisms that govern bodily movement.
– Unit 5 Brain Development (week 10). Next, we turn our attention to the neurobiological mechanisms for building the nervous system in embryonic development and in early postnatal life; we will also consider how the brain changes across the lifespan.
– Unit 6 Cognition (weeks 11-12). The course concludes with a survey of the association systems of the cerebral hemispheres, with an emphasis on cortical networks that integrate perception, memory and emotion in organizing behavior and planning for the future; we will also consider brain systems for maintaining homeostasis and regulating brain state.

Nonlinear Dynamics and Chaos – Steven Strogatz, Cornell University

This course of 25 lectures, filmed at Cornell University in Spring 2014, is intended for newcomers to nonlinear dynamics and chaos. It closely follows Prof. Strogatz’s book, “Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering.”

The mathematical treatment is friendly and informal, but still careful. Analytical methods, concrete examples, and geometric intuition are stressed. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

A unique feature of the course is its emphasis on applications. These include airplane wing vibrations, biological rhythms, insect outbreaks, chemical oscillators, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with the mathematical theory. The theoretical work is enlivened by frequent use of computer graphics, simulations, and videotaped demonstrations of nonlinear phenomena.

The essential prerequisite is single-variable calculus, including curve sketching, Taylor series, and separable differential equations. In a few places, multivariable calculus (partial derivatives, Jacobian matrix, divergence theorem) and linear algebra (eigenvalues and eigenvectors) are used. Fourier analysis is not assumed, and is developed where needed. Introductory physics is used throughout. Other scientific prerequisites would depend on the applications considered, but in all cases, a first course should be adequate preparation.

Learning How to Learn: Powerful mental tools to help you master tough subjects

This course gives you easy access to the invaluable learning techniques used by experts in art, music, literature, math, science, sports, and many other disciplines. We’ll learn about the how the brain uses two very different learning modes and how it encapsulates (“chunks”) information. We’ll also cover illusions of learning, memory techniques, dealing with procrastination, and best practices shown by research to be most effective in helping you master tough subjects.

Using these approaches, no matter what your skill levels in topics you would like to master, you can change your thinking and change your life. If you’re already an expert, this peep under the mental hood will give you ideas for: turbocharging successful learning, including counter-intuitive test-taking tips and insights that will help you make the best use of your time on homework and problem sets. If you’re struggling, you’ll see a structured treasure trove of practical techniques that walk you through what you need to do to get on track. If you’ve ever wanted to become better at anything, this course will help serve as your guide.

This course can be taken independent of, concurrent with, or prior to, its companion course, Mindshift. (Learning How to Learn is more learning focused, and Mindshift is more career focused.)

The Compassion Course

From Thom:

The NYCNVC Compassion Course is the result of my last 28 years as a writer and trainer, and the past 15 years, studying, living and teaching Nonviolent Communication (NVC). It’s my way of making the skills of compassionate living available to anyone, regardless of time and money constraints.

The 2016 Compassion Course (currently in progress) has more than 5,000 participants from over 100 countries. For six years running, this course has proven to be “life-changing”, “fun” and “transformational” (check out the quotes below).

How It Works

Through weekly email messages, the course imparts concepts, stories and practices that empower us to be more compassionate. We learn clear practices that help us and those around us, have more understanding and well-being in our lives (see sample weeks below). The weekly messages explain and demonstrate ways of thinking, speaking and acting that allow us to get through conflict without hurting or hating.

As a global community, we share resources including links and exercises, message forums, conferences and enjoy a sense of connection and expanded learning while preserving personal space and time. The weekly email messages will include access to multiple message boards, access to archived messages, conference recordings, documents, video content, special exercise pages and more.

Why It Works

In the same way that we humans have developed other technologies, the technology of compassion has developed too. This course provides clear, specific ideas and practices to help us experience more compassion, understanding, harmony and fun. That said, it is challenging and calls on our perseverance, practice, focus and dedication.

Through practical steps, the course provides the “how to” of creating more connection, understanding and compassion in our daily lives… a way to create a world we will be happy to leave our children’s children. It is my honor and dream to share this with you for the sixth year. I hope you will join me.

*warm grateful smile*

Thom

Human Behavioral Biology

Multidisciplinary. How to approach complex normal and abnormal behaviors through biology. How to integrate disciplines including sociobiology, ethology, neuroscience, and endocrinology to examine behaviors such as aggression, sexual behavior, language use, and mental illness.